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The study of the response of complex dynamical social, biological, or technological networks to
external perturbations has numerous applications. Random Boolean Networks (RBNs) are com-
monly used as a simple generic model for certain dynamics of complex systems. Traditionally,
RBNs are interconnected randomly and without considering any spatial extension and arrangement
of the links and nodes. However, most real-world networks are spatially extended and arranged with
regular, power-law, small-world, or other non-random connections. Here we explore the RBN net-
work topology between extreme local connections, random small-world, and pure random networks,
and study the damage spreading with small perturbations. We find that spatially local connec-
tions change the scaling of the Hamming distance at very low connectivities (K̄ � 1) and that
the critical connectivity of stability Ks changes compared to random networks. At higher K̄, this
scaling remains unchanged. We also show that the Hamming distance of spatially local networks
scales with a power-law as the system size N increases, but with a different exponent for local and
small-world networks. The scaling arguments for small-world networks are obtained with respect
to the system sizes and strength of spatially local connections. We further investigate the wiring
cost of the networks. From an engineering perspective, our new findings provide the key design
trade-offs between damage spreading (robustness), the network’s wiring cost, and the network’s
communication characteristics.

PACS numbers: 05.45.-a, 05.65.+b, 89.75.-k

I. INTRODUCTION

The robustness against failures, the wiring cost, and
the communication characteristics are key measures of
most complex, finite-size real-world networks. For exam-
ple, the electrical power grid needs to be robust against
a variety of failures, minimize the wiring cost, and min-
imize the transmission losses. Similarly, the neural cir-
cuitry in the human brain requires efficient signal trans-
mission and robustness against damage while being con-
strained in volume.

In this letter, we use random Boolean networks (RBNs)
as a simple model to study the (1) robustness, i.e., the
damage spreading, (2) the wiring cost, and (3) the com-
munication characteristics as a function of different net-
work topologies (local, small-world, random), different
connectivities K̄, and different network sizes N . More
generally speaking, this allows us to answer the question
of how much and what type of interconnectivity a complex
network—in our case RBNs—needs in order to satisfy
given restrictions on the robustness against certain types
of failure, the (wiring) cost, and the (communication) ef-
ficiency. The work presented here extends previous work
by Rohlf et al. [1] to new network topologies, which are
more biologically plausible, such as for example small-
world topologies [2].

RBNs were originally introduced by Kauffman as sim-
plified models of gene regulation networks [3, 4]. In its
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simplest form, an RBN is a discrete dynamical system,
also called an NK network (or model), composed of N
automata (or nodes), each of which receives inputs from
K (either exact or average) randomly chosen other au-
tomata. Each automaton is a Boolean variable with two
possible states: {0, 1}, and the dynamics is such that

F : {0, 1}N 7→ {0, 1}N , (1)

where F = (f1, ..., fi, ..., fN ), and each fi is represented
by a look-up table of Ki inputs randomly chosen from the
set of N automata. Initially, Ki neighbors and a look-up
table are assigned to each automaton at random.

fi : {0, 1}Ki 7→ {0, 1}. (2)

An automaton state σti ∈ {0, 1} is updated using its cor-
responding Boolean function:

σt+1
i = fi(x

t
i1 , x

t
i2 , ..., x

t
iKi

). (3)

We randomly initialize the states of the automata (initial
condition of the RBN). The automata are updated syn-
chronously using their corresponding Boolean functions.

σt+1 = F(σt), (4)

In the thermodynamic limit, RBNs exhibit a dynami-
cal order-disorder transition at a sparse critical connec-
tivity Kc [5]. For a finite system size N , the dynamics of
RBNs converge to periodic attractors after a finite num-
ber of updates. At Kc, the phase space structure in terms
of attractor periods [6], the number of different attrac-
tors [7], and the distribution of basins of attraction [8]



are complex, showing many properties reminiscent of bi-
ological networks [4].

The study of the response of complex dynamical net-
works to external perturbations, also referred to as dam-
age, has numerous applications, e.g., the spreading of
disease through a population [9, 10], the spreading of a
computer virus on the internet [11], failure propagation
in power grids [12], the perturbation of gene expression
patterns in a cell due to mutations [13], or the inter-
mittent stationary state in economic decision networks
triggered by the mutation of strategy from a few individ-
ual agents [14]. Mean-field approaches, e.g., the annealed
approximation (AA) introduced by Derrida and Pomeau
[5], allow for an analytical treatment of damage spread-
ing and exact determination of the critical connectivity
Kc under various constraints [15, 16]. However, these
approximations rely on the assumption that N → ∞,
which, for an application to real-world problems, is of-
ten an irrelevant limit. A number of studies [17, 18] has
recently focused on the finite-size scaling of (un-)frozen
and/or relevant nodes in RBN with respect to N with the
goal to go beyond the annealed approximation. Evolved
small-world and scale-free networks were investigated for
the density and the synchronization task with regards to
performance and robustness in [19]. Their work solely
focuses on these two tasks and does not consider scaling
arguments. Only a few studies, however, consider finite-
size scaling of damage spreading in RBNs [1, 13, 20]. Of
particular interest is the “sparse percolation (SP) limit”
[20], where the initial perturbation size d(0) does not
scale up with the network size N , i.e., the relative size of
perturbations tends to zero for large N . Rohlf et al. [1]
have identified a new characteristic connectivity Ks for
RBNs, at which the average number of damaged nodes
d̄, after a large number of dynamical updates, is indepen-
dent of N . This limit is particularly relevant to informa-
tion and damage propagation in many technological and
natural networks. The work in this letter extends these
new findings and systematically studies damage spread-
ing in RBNs as a function of new network topologies,
namely local and small-world, different connectivities K̄,
and different network sizes N .

II. DAMAGE SPREADING

For our purpose, we measure the expected damage d̄
as the Hamming distance between two different initial
system configurations after a large number of system up-
dates T . The randomly chosen initial conditions differ
by one bit, i.e., the damage size is 1. As introduced in
[1], let N be a randomly sampled set (ensemble) of zN
networks with average degree K̄, In a set of zI random
initial conditions tested on network n, and I ′n a set of
zI random initial conditions differing in one randomly

chosen bit from these initial conditions. Then we have

d̄ =
1

zN zI

zN∑
n=1
Nn∈N

zI∑
i=1

~σi∈In,~σ′
i∈I′n

dni (T ), (5)

where dni (T ) is the measured Hamming distance after
T system updates. Rohlf et al. [1] have shown that
there exists a characteristic connectivity Ks, at which
the average number of damaged nodes d̄, after a large
number of dynamical updates, is independent of N .

In a given network, the nodes can be classified accord-
ing to their response to the network dynamics (e.g., see
[17, 18]). This classification allows to better explain the
global network behavior with respect to external pertur-
bations.

A set of nodes is said to be part of the frozen component
(or frozen core) if each node’s output is constant regard-
less of its inputs. The states of these nodes remain con-
stant on every attractor, so that external perturbations
cannot spread into the frozen component. The frozen
core does therefore not contribute to the spreading of
the damage. The irrelevant nodes (or irrelevant compo-
nent) are the nodes whose outputs may change, but their
outputs are only connected to either frozen or other ir-
relevant nodes. Again, these nodes do not participate in
the damage spreading. The remaining set of nodes are
the relevant nodes (or relevant component). Their state
changes and each relevant node is connected to at least
another relevant node. As their name suggests, the rel-
evant nodes are the crucial ones, which determine the
number and the period of attractors in a given network.
For our purpose, studying the scaling behavior of the
Hamming distance is important for the study of damage
spreading because the Hamming distance between the
damaged and the undamaged network can be viewed as
a quantitative measure of the distance between the two
different attractors the networks settle in.

In this letter, we use three exemplary types of network
topologies: (1) random, (2) spatially local, and (3) small-
world. In the following we will describe the models we
used to create each of these network topologies and what
the relevant parameters are. For more details see the
text in the next three sections (II A, II B, and II C). Note
that in all of these network topologies, the links are di-
rected, self-loops are allowed, and multiple-links between
the same pair of nodes are excluded.
a. Random topology. Each of the N nodes has a uni-

form probability to be connected to any other node in
the network. The average connectivity is K̄. This topol-
ogy corresponds to the original NK model proposed by
Kauffman [3].
b. Spatially local topology. N nodes are uniformly

and randomly distributed in a unit d-dimensional spa-
tial area (non-periodical). Each node randomly connects
to its nearest neighbors (including itself) until the desig-
nated K̄ is reached. This network topology can be classi-
fied as a spatial graph. In the limit of small K̄ (K̄ � N),
such a d-dimensional, spatially local network has an av-
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erage path length of ∼ N1/d [21], which is similar to a
d-dimensional regular lattice [22].

c. Small-world topology. Starting from 2D spatially
local networks as described above, we apply a rewiring
method to obtain a small-world network topology. The
source of every existing link will be rewired with proba-
bility p to a randomly chosen node in the network. Thus,
when p → 0, we obtain the original spatially local net-
work, while for p → 1 we obtain a random graph as
described above.

A. RBNs with a Random Network Topology

Rohlf et. al. [1] have systematically investigated dam-
age spreading, i.e., the evolution of the Hamming dis-
tance d̄R, of random Boolean networks at the sparse per-
colation (SP) limit. By using finite-size scaling, they
found a new characteristic connectivity KS = 1.875 at
which the damage spreading is independent of the sys-
tem size N .

In the limit of a small average degree K̄ → 0, the
initial perturbation persists only when the damage hits
nodes that are in loops of length two or that have self-
connections. For a random network topology, the proba-
bility of generating such loops scales with Ploop ∼ 1/N2,
where N is the system size. Thus, the Hamming dis-
tance is proportional to the number of simple loops,
d̄R ∼ PloopK̄N ∼ N−1. For large K̄, the relevant compo-
nent grows comparable with the system size, so the initial
damage now percolates through the entire network, and
we have d̄R ∼ N . For arbitrary K̄, the Hamming dis-
tance d̄R scales as follows [1]:

d̄R(K̄,N) ∼ a(K̄)NγR(K̄) , (6)

where γR → −1 at K̄ → 0 and γR → 1 at large K̄.
At criticality (i.e., K = 2), the asymptotic dynamics are
determined entirely by the relevant component, which
scales as nr ∼ N1/3 [17], thus γR(Kc) ' 1/3. As already
seen above, at K̄ = Ks = 1.875 we have γR(Ks) = 0, and
the Hamming distance d̄ is independent of the system size
N [1]. This means that at the “critical connectivity of
stability” Ks, the damage caused by initial perturbations
is confined at a finite level (i.e., the proportion of damage
goes to zero as N →∞), regardless of the system size N .

Figure 1 shows the power-law dependence of the Ham-
ming distance d̄ as a function of the system size N for
multiple K̄ and for our three types of random network
classes. γR as a function of the average degree K̄ is shown
in Fig. 2.

B. RBNs with Spatially Local Connections

Many real-world networks are spatially extended and
have a more structured interconnect topology than pure
random networks have. Such networks are commonly
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FIG. 1. (Color online) The Hamming distance d̄ as a func-
tion of the system size N for (a) random networks, (b) net-
works with spatially local connections, and (c) small-world
networks, for different K̄. K̄ takes the values 2.6, 2.2, 2.0, 1.8,
1.5, and 1.0, from top to bottom. The data for the random
networks confirms the data as first presented in [1]. Averaged
over 10, 000 randomly generated networks and 100 random
initial configurations for each value of K̄. T = 1000 system
updates, initial damage size d(0) = 1.

called complex networks. Spatial networks with local con-
nections only, such as regular grids, have a large average
path length (l ∼ N1/d) and are highly clustered. In this
section, we look at the dynamics of spatial RBNs with lo-
cal connections only. The underlying network structure
is constructed based on the model of Uniform Spatial
Graphs [21], in which vertices may connect uniformly at
random to other vertices within a spatial distance lc in
Rd. We do this as follows: N nodes are randomly dis-
tributed in a d-dimensional space (only d = 2 will be
considered here), we then randomly pick a pair of nodes
u,v and create edge (u, v) if the spatial distance is within
the cut-off distance lc, disallowing repeated edges. This
procedure is repeated until the required average degree
K̄ is reached. For a small cutoff distance, or any finite
cutoff when N → ∞, e.g., lc ∼ O(1), the characteristic
path length remains similar to that of d-dimensional reg-
ular lattices [21]. Establishing links as a function of the
distance, was also considered by [23, 24].

For very large K̄, the system is in the chaotic regime
and any initial damage quickly percolates through the
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FIG. 2. (Color online) Scaling exponents γ(K̄) as a function
of K̄ for random networks (open squares), networks with local
connections (open triangles), and small-world networks (open
circles). This figure is obtained from the best fit of the data of
Fig. 1 using Eq. (6), (7), and (10). The data for the random
networks confirms the data as first presented in [1].

network. Thus, the damage is only bounded by the sys-
tem size N , which gives us d̄L ∼ N1. In the limit of
K̄ → 0, nonzero damage can emerge only when the ini-
tial perturbation hits a short loop of oscillating nodes.
Let us assume we have a single connection from node A
to node B (A → B). In order to finish a simple loop
between A and B, we need to first select node B as the
starting point, which has a probability of about ∼ 1/N .
The probability to pick A as a neighboring node from B
to close the loop is∼ 1/nB , where nB is the possible num-
ber of B’s local neighbors. For a purely local network,
nB � N . In a network of extreme local connections,
the probability of forming simple oscillating loops scales
with Ploop ∼ 1/(nBN) ∼ N−1. The number of such loops
scales with ∼ PloopK̄N ∼ const., and is thus independent
of the system size N . We expect to see coinciding Ham-
ming distances at low K̄ for different system sizes N on
extremely local networks. This remains valid until the
network reaches the percolation threshold where segre-
gated simple loops become connected and a giant cluster
emerges. Furthermore, compared to random networks,
the local connections lowered the probability of forming
the relevant component at criticality because each rel-
evant node needs to be controlled by another relevant
node. We thus expect that the damage increases slower
compared to random networks. In particular, the expo-
nent is smaller than 1/3 at Kc because γ = 1/3 at Kc for
random networks [1].

Fig. 1(a) shows the Hamming distance as a function
of the system size N for different connectivities K̄. As
one can see, for small K̄, the damage remains constant
as N increases. While for large K̄ (above the percolation
limit) the damage spreading increases with the system

size N according to a power-law. We therefore have:

d̄L(K̄,N) ∼ a(K̄)NγL(K̄) , (7)

where γL → 0 at K̄ → 0, and γL → 1 for large K̄. If
we do a best fit for the data as shown in Fig. 1(a) using
Eq. (6), (7), we obtain γL as a function of K̄. This is
shown in Fig. 2.

Finally, Fig. 3(d) shows the average Hamming distance
for an initial damage size of one for local networks with
different system sizes N . As one can see, all curves coin-
cide below the percolation threshold. This confirms again
our assumption of the scaling behavior for low K̄.

C. RBNs with a Small-World Topology

Both purely random and purely local networks are ex-
treme network topologies. Many biological, technolog-
ical, and social networks lie somewhere between these
two extremes and are categorized as “small-world net-
works” [25]. Small-world networks typically exhibit a
number of advantages over locally connected networks,
such as a short average path length, synchronizability,
and improved robustness against certain types of failures
[22]. It is therefore of fundamental interest to study the
damage spreading in RBN networks with a small-world
interconnect topology.

Starting from the 2D Uniform Spatial Graph we have
used above for the locally interconnected network, we ap-
ply a simple rewiring strategy to construct a small-world
network. Each existing connection in the Uniform Spa-
tial Graph is rewired with probability p to a randomly
chosen node. Thus, a fraction of p links in the network
are random long-range links, or small-world links, while
the remaining fraction of q = 1 − p links are local links
connecting geometrically local neighbors. We will use q
as the main parameter to represent the “strength” of the
local connections. Note that for the extreme case of com-
plete random spatial networks, by definition the density
of the local connections is ∼ 1/N . Combined with the
system size N , Nq is approximately the number of nodes
that have a local connection (at the sparse percolation
limit). For Nq ∼ 1 the network is in the random regime
(see Sec II A); and for Nq � 1 we obtain a spatially local
network (see Sec II B).

We will now use a similar scaling approach for small-
world RBNs as presented above for local and random
networks. Again, at very large K̄, the damage will only
be bounded by the system size, thus d̄SW ∼ N1. But for
K̄ → 0, the network is now composed of both local and
random (longer range) connections and the probability
of forming simple loops thus scales differently. Let us
assume we have a local link that has already been con-
nected (A→ B). The probability of having such a local
link is q, and to complete a simple loop that contains
this local connection, we first need to pick node B with
probability 1/N . Node B will then establish connections
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FIG. 3. (Color online) Average Hamming dis-
tance (damage) d̄ after 200 system updates, aver-
aged over 10, 000 randomly generated networks
and 100 random initial configurations for each
value of K̄. The initial damage size is one. Net-
work topologies: (a) random networks (p = 1.0,
q = 0), (b) small-world network with p = 0.9
(q = 0.1), (c) small-world networks with p = 0.8
(q = 0.2), and (d) networks with completely lo-
cal connections (p = 0, q = 1.0). (a), (b), and
(c) suggest that all curves of random and small-
world networks for different N approximately in-
tersect in a characteristic point Ks. Ks moves
toward small K̄ as the fraction of local connec-
tions increases (Ks ' 1.875 in (a), Ks ' 1.80 in
(b) and Ks ' 1.75 in (c)). For complete local
networks all curves coincide below the percola-
tion threshold independently of N .

again with his local neighbors with probability q, and fi-
nally choose node A to finish the loop with probability
1/nB . Thus, the final probability of having a simple loop
in this case scales with PloopL ∼ q2/N . Similarly the
probability of generating a simple loop involving random
long-range links is PloopR ∼ p2/N2. We compare these
two probabilities by dividing one by another:

PloopL
PloopR

=
q2

N
/
p2

N2
= (Nq) · q

p2
. (8)

In the spatially local network limit (Nq � 1), PloopL is
the leading term and the scaling follows Eq. (7). In the
random network limit (q → 0 and Nq ∼ 1), PloopR domi-
nates and the scaling follows Eq. (6). However, when the
network is in the small-world regime, PloopL and PloopR
become comparable. With some corrections, we therefore
have:

PloopSW = PloopL + PloopR =
q2

N
+

p2

N2
' 1

Nβ
, (9)

where β is somewhere between 1 and 2 and depends on
the value of Nq. The damage spreading scales therefore
with d̄SW ∼ N1−β . And for general K̄, we obtain:

d̄SW (K̄,N) ∼ a(K̄)NγSW (K̄) , (10)

where γSW is somewhere between 1−β to 1. Fig. 2 shows
γR, γL, and γSW . As one can see, γSW goes from 1− β,
which is below zero, to 1 as K̄ increases. In addition, the
critical connectivity K̄, where γSW = 0, is different from
that of random networks and depends on q. In random
networks this point is defined as the critical degree of sta-
bility Ks [1]. Our results show that the introduction of
local connections in random networks changes Ks toward
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FIG. 4. (Color online) Hamming distance d̄ for different aver-
age degrees K̄ as a function of the density of local connections
q. The inset shows d̄ in the range of random networks (q → 0)
to local networks (q → 1). The different curves range from
(top to bottom) K̄ = 2.2 to K̄ = 1.02 with an interval of 0.2.

lower K̄. As we have seen above, in extreme local net-
works, Ks is undefined because the Hamming distance
for different system sizes N simply coincide below the
percolation threshold. Fig. 3 (c) shows the deviation of
Ks from the observed value Ks = 1.875 for random net-
works.

D. Scaling of Damage Spreading in Random
Small-World RBNs

While Eqs. (6) and (7) provide the scaling of the Ham-
ming distance for random and local networks, we are in-
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FIG. 5. (Color online) Reconstructed γSW from Eq. 15 by
measuring α(K̄) from best fits of Fig. 4 at q = 0.2 (p = 0.8).
Squares (black) and circles (red) are measured γR and γSW ,
respectively, from Fig. 1, while triangles (blue) are recon-
structed γSW from γR and α(K̄).

terested in this section in how q (i.e., the fraction of local
links) affects the damage spreading.

Fig. 4 shows the Hamming distance as a function of q.
For sufficiently large Nq, i.e., close to the local network
limit, we assume (see Fig. 4) that the Hamming distance

approaches an asymptotic power law d̄SW ∼ qα(K̄). On
the other hand, the Hamming distance also depends on
the system size with d̄SW ∼ NγSW (K̄) (see Eq. (10)).
Thus, in the small-world regime (close to the local net-
work limit) the Hamming distance depends on both the
system size and the density of local (random) connec-
tions:

d̄SW (q, K̄,N) ∼ qα(K̄)NγSW (K̄) . (11)

When q → 1, γSW (K̄) → γL(K̄), so d̄SW → d̄L. While
in the random network limit (Nq ∼ 1), d̄ only depends on

N , d̄R ∼ NγR(K̄) with γR(K̄) as illustrated in Fig. 2. To
connect the above two cases and to capture the finite-size
behavior in the small-world regime, one can construct the
full scaling behavior of d̄SW (q, K̄,N):

d̄SW (q, K̄,N) ∼ qα(K̄)NγSW (K̄)f(Nq) , (12)

where f(x) is a scaling function such that

f(x) ∼
{
x−α if x ∼ 1
const. if x�1

. (13)

The random network limit is obtained provided that

d̄ ∼ qα(K̄)NγSW (K̄)(Nq)−α ∼ NγSW−α ∼ NγR , (14)

i.e.,

γR = γSW − α(K̄) . (15)

Given γR we can express γSW by measuring α(K̄) at dif-
ferent K̄. Fig. 5 shows the reconstructed γSW with the

measured data, which satisfy the above proposed asymp-
totic scaling relation.

To analyze our data, Eq. (12) can also be written as

d̄SW (q, K̄,N) ∼ (Nq)γSW

qγSW−α
f(Nq) ∼ 1

qγR
g(Nq) , (16)

where g(x) = xγSW f(x). Thus plotting d̄qγR vs. Nq
should yield coinciding data with g(x). The limits of
random and spatially local networks correspond to the
asymptotic small and large argument of g(x), which gives
us the exponents γR, and γL,

g(x) ∼
{
xγR if x ∼ 1
xγSW → xγL if x�1

. (17)

Fig. 6 shows the scaling plots of the Hamming distance
as a function of the product of the system size N and
strength of the local connections q, as predicted by the
proposed finite-size scaling for small-world RBNs. Also,
given that γR and γL are functions of the average degree
K̄, as shown in Fig. 2, the shapes of f(x) or g(x) also
changes with K̄. As one can see in Fig. 6(a)-(c), g(x)
coincides under different K̄. In addition, the asymptotic
behavior of g(x) at x ∼ 1 and x� 1 agree very well with
our measured “phenomenological” exponents γR(K̄), and
γL(K̄) at K̄ = 1.4, K̄ = 2.0, and K̄ = 4.0, respectively.

III. WIRING COST

From an engineering perspective, one wants to typi-
cally minimize the wiring cost of a network, maximize
the communication characteristics, and maximize the ro-
bustness against failures. The electric power grid is a
good example and so are nano-scale interconnect net-
works [26]. In this section we will look at these three
trade-offs for RBNs.

The average shortest path length is generally a good
measure for the communication characteristics of a com-
plex network. In a directed network we define l as the
mean geodesic (i.e., shortest) distance between vertex
pairs in a network [22]:

l =
1

n(n− 1)

∑
i 6=j

dij , (18)

where dij is the geodesic distance from vertex i to vertex
j. Here we have excluded the distance from each node to
itself. Eq. 18 will be problematic if the network has more
than one component, which is very likely for small K̄. To
avoid the problem of disconnected networks, we compute
the average path length only for those vertex pairs that
actually have a connecting path between them.

For real-world networks, if shortcuts, i.e., the ran-
dom small-world links, have to be realized physically, the
cost of a long-range connection is likely to grow with its
length. E.g., the power consumption for wireless broad-
cast communication in free space generally could be a
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FIG. 6. (Color online) Scaling plots of the Hamming distance in small-world networks as predicted by the finite-size scaling
argument (Eq. (16)). (a) K̄ = 1.4; (b) K̄ = 2.0; and (c) K̄ = 3.0. The straight line segments correspond to asymptotic
power-law behavior of the scaling function g(x) with exponents γR and γL, measured from Fig. 2 at given K̄, for small and
large arguments, respectively, as described in the text (Eq. (17)).

FIG. 7. (Color online) The product of damage size d, the
network wiring cost cost, and the average shortest path length
l as a function of the average connectivity K̄ and the density
of random connections p. The color density corresponds to
the value of d× l × cost. d, l, and cost were normalized.

cubic power of geometric distance, while the implemen-
tation of directional antenna will reduce the transmission
cost significantly [27]. Petermann et al. [28] discuss the
wiring-cost for some spatial small-world networks rang-
ing from integrated circuits, the Internet to cortical net-
works. For simplicity, we assume here that the wiring
cost has a linear dependency on the geometrical distance
between two nodes.

Fig. 7 shows the aggregate sum of the wiring cost, the
average shortest path length l, and the damage size d̄ as
a function of the average connectivity K̄ and the den-
sity of random connections p. For a given K̄ and p, one
can therefore find the network with the lowest cost, the
best performance, and the highes robustness. The cou-
tour lines allow to determine the optimal K̄ and p for
a fixed aggregat product. In addition, Fig. 8 shows the
z-projection of Fig. 7 using the same data. For exam-

FIG. 8. (Color online) Contour projection of Fig. 7. The color
density corresponds to the value of d+ l+ cost. At p = 0 the
network topology is completely local; p = 1 corresponds to
the random network; and for 0 < p < 1 the network is in
the small-world regime. The circles indicate the position of
lowest possible K̄ and corresponding p for given tolerance
level of d× l × cost. d, l, and cost were normalized.

ple, it shows that for a given specific target average con-
nectivity K̄, networks with a high proportion of random
connections (i.e., close to random networks, p → 1) will
have a similar overall performance, cost, and robustness
as networks with more local connections (p → 0), how-
ever, whereas p → 1 networks have a high wiring cost,
a low average path length, and a low damage resistivity,
p → 0 networks have a low wiring cost, a high average
path length, and a high damage resistivity.

IV. CONCLUSION

We have systematically investigated the damage
spreading in spatial and small-world random Boolean

7



networks. We have found that (1) spatially local con-
nections change the scaling of the Hamming distance at
very low connectivities (K̄ � 1) and (2) that the critical
connectivity of stability Ks changes compared to random
networks [1]. Ribeiro et al. [29] reported similar results,
namely that by changing the local network structure, Ks

shifts. At higher K̄, this scaling remains unchanged. We
also show that the Hamming distance of spatially local
networks scales with a power-law as the system size N in-
creases, but with a different exponent for local and small-
world networks. In addition, we have investigated the
trade-offs between the wiring cost of the networks, the
communication characteristics, and the robustness, i.e.,
the damage spreading. From an engineering perspective,
one typically wants to minimize the wiring cost, maxi-
mize the communication characteristics, e.g., the shortest

path between any two nodes, and maximize the robust-
ness against failures. Our new findings provide these key
trade-offs and allow to determine the lowest connectivity
K̄ and the amount of randomness p in a network for a
given robustness, average path length, and wiring cost.

Future work will focus on the investigation of real-
world networks and the application of our methodology
to make them more robust, cheaper, and more efficient.
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